CSE 451: Operating Systems
Winter 2022

Module 12

Virtual Memory, Page Faults,
Demand Paging, and Page Replacement

Gary Kimura

Reminder: Mechanics of address translation

virtual address X
virtual page # | offset
— — T physical memory
————— page
page table (—~ frame O
- / page
_ : fr
physical address [%
é DWD > | page frame # | offset —é | frame 24~
I ——— Y | L page
= frame 3

/ \\ pa:ge

Note: Each process \ frame Y

has its own page tably

Paging advantages
ot YD
Easy to allocate physical memo

— physical memory is allocated from free list of frames
 to allocate a frame, just remove it from the free list

— extergg! fragmentation is not a problem
* managing variable-sized allocations is a huge pain in the neck

— “buddy system”

Leads naturally to virtual memory

— entire program need not be memory resident
— take page faults using “valid” bit

— all “chunks” are the same size (page size)

— but paging was originally introduced to deal with external
fragmentation, not to allow programs to be partially resident

Paging disadvantages (o5

« Can still have internal fragmentation Lk K@

— Process may not use memory in exact multiples of pages

— But minor because of small page size relative to address space
size

« Memorv reference.overhead

— 2 references per address lookup (page table, then memory)

— Solution: use a hardware cache to absorb page table lookups
 translation lookaside buffef (TLB) > next class

« Memory required to hold page tables can be large
— need one PTE per page in virtual address space
— 32 bit AS with 4KB pages % 229PTEs = 1,048,576 PTEs
— 4 bytes/PTE = 4MB per page table

« OS’s have separate page tables per process
« /25processes = 100MB of page tables
UUVIE

— Solution: page the page tables (!!!)
- (ow, my brain hurts...more later)

(< e -1 cC

Reminder: Page Table Entries (PTEs)

111 2 20
VIR|M| prot page frame number
PTE's control mapping

— the valid bit says whether or not the PTE can be used
. /sﬁs—whether or not a virtual address is valid
* it is checked each time a virtual address is used
— the referenced bit says whether the page has been accessed
* it is set when a page has been read or written to
— the modified bit says whether or not the page is dirty
. Mn a write to the page has occurred
— the protection bits control which operations are allowed

« read, write, execute

— the page frame number determines the physical page
« physical page start address = PFN

_ WnSbo

) Q AL 5

Example of a process PT and how the
PTE’'s change

« Valid, referenced, modified, & protection bits
3(ro e~ <
\/7‘\1, B

o f&ﬂi |
_ \((pCT?CUZ»\)h b

wfff/)éﬂrm/w mw/{

s

t

2/9/2022 6

Paged virtual memory

 We've hinted that all the an address space
do not need to be resident in memory

— the full (used) address space exists on secondary storage
(disk) in page-sized blocks

— the OS uses main memory as a (page) cache

— a page that is needed is transferred to a free page frame

— if there are no free page frames, a page must be evicted
« evicted pages go to disk (only need to write if they are dirty)

— all of this is transparent to the application (except for
performance ...)

* managed by hardware and OS

» Traditionally called paged virtual memory

Picture of how VM is implemented

* Virtual Address Space
« Main memory and backend store
e\

2/9/2022

Feang

<

(O

a0l
S

Page faults

 What happens when a process references a virtual
address in a page that has been evicted (or never
loaded)?

— when the page was evicted, the OS set the PTE as invalid
and noted the disk location of the page in a data structure
(that looks like a page table but holds disk addresses)

— when a process tries to access the page, the invalid PTE will
cause an exception (page fault) to be thrown

OK, itfs actually an interrupt!

— the OS will run the page fault handler in response

handler uses the “like a page table” data structure to locate the
page on disk B

handler reads page into a physical frame, updates PTE to point
to it and to be valid -

OS restarts the faulting process
there are a million and one details ...

Page fault example

./ W p;q(/LC)L
LN E

2/9/2022

Demand paging

Pages are only brought into main memory when they
are referenced

— only the code/data that is needed (demanded!) by a process
needs to be loaded S

« What's needed changes over time, of course...
— Hence, it's called demand paging

Few systems try to anticipate future needs
— OS crystal ball module notoriously ineffective

But it's not uncommon to cluster pages
e

— OS keeps track of pages that should come and go together

— bring in all when one is referenced

— interface may allow programmer or compiler to identify
clusters

11

Page replacement

 When you read in a page, where does it go?

— if there are free page frames, grab one
» what data structure might support this?

— if not, must evict something else

— this is called page replacement

* Page replacement algorithms
—| try to pick a page that won’t be needed in the near future

—/ try to pick a page that hasn’t been modified (ihus saving the disk
write)

— OS typically tries to keep a pool of free pages around so that
allocations don’t inevitably cause evictions

~\ OS also typically tries to keep some “clean” pages around, so that

even if you have to evict a page, you won'’t have to write it
» accomplished by pre-writing when there’s nothing better to do

— Much more on this later!

12

How do you “load” a program?

Create process descriptor (process control block)
Create page table

Put address space image on disk in page-sized
chunks

Build page table (pointed to by process descriptor)
— all PTE valid bits ‘false’

— an analogous data structure indicates the disk location of the
corresponding page
— when process starts executing:
* instructions immediately fault on both code and data pages

« faults taper off, as the necessary code/data pages enter
memory

13

Oh, man, how can any of this possibly work?

e |Loedli

< — temporal locality
'renced recently tend to be referenced again soon

spatial locality

* location ccently references locations are likely to be
eferenced soon (think about why)

« Locality means paging can be infrequent

L

— once you've paged something in, it will be used many times
— 0on average, you use things that are paged in

— but, this depends on many things:
« degree of locality in the application
« page replacement policy and application reference pattern

. sical memory vs. application “footprint” or
‘working set”)

sl

14

Evicting the best page

/ The goal of the page replacement algorithm:
— reduce fault rate by selecting best victim page to remove
« “system” fault rate or “program” fault rate??
— the best page to evict is one that will never be touched again

« duh ... -

— “never’is a long time

« Belady’s proof: evicting the page that won’t be used for the
longest period of time minimizes page fault rate

« Rest of this module:
— survey a bunch of page replacement algorithms

— for now, assume that a process pages against itself, using a
fixed number of page frames

15

Example of what page to toss out

* Trying to predict access patterns
— Linear? Random? Everything imaginable

Z
Ve

1

L

/-

————

—T5

__—

2/9/2022

LA NT S

>

D

16

#1: Belady’s Algorithm

Provably optimal: lowest fault rate {remember SJF?)
— evict the page that won't be used for the longest time in future
— problem: impossible to predict the future

Why is Belady’s algorithm useful?

— as a yardstick to compare other algorithms to optimal

« if Belady’s isn’t much better than yours, yours is pretty good
— how could you do this comparison?

Is there a best practical algorithm?
— no; depends on workload

« don’t laugh —there are some other situations where OS’s use
near-random algorithms quite effectively!

17

#2: FIFO

FIFO is obvious, and simple to implement
— when you page in something, put it on the tail of a list
— evict page at the head of the list

Why might this be good?
— maybe the one brought in longest ago is not being used
Why might this be bad?
— then again, maybe it is being used
— have absolutely no information either way
In fact, FIFO’s performance is t

In addition, F rs fron(BeIady’s Anomaly

_ there aré reference strings for which
when the p Is gl

ore physical memory

18

FIFO Example

~ S
s P |
o S

B

_/

2/9/2022 19

#3: Least Recently Used (LRU)

« LRU uses reference information to make a more
informed replacement decision
— idea: past experience gives us a guess of future behavior

— on replacement, evict the page that hasn’t been used for the
longest amount of time

* LRU looks at the past, Belady’s wants to look at future
* How ' rom FIFO?

« when is it Io@ \
-

1
Example bad 7(\/ S I :
case: looping

through array

\ J
Y
amount of physical memory

20

#3: LRU continued

Implementation

— to be perfect, must grab a timestamp on every memory
reference, put it in the PTE, order or search based on the
timestamps ...

— way too $$ in memory bandwidth, algorithm execution time,
etc.

— S0, we need a cheap approximation ...

21

Approximating LRU

« Many approximations, all use the PTE'’s referenced bit
— keep a counter for each page

— at sommntewal, for each page, do:
. B}ﬂf@mrement the counter (hasn’t been used)
- if ref bit = 1, zero the Counter> (has been used)
* regardless, zero ref bit
— the counter will contain the # of intervals since the last
reference to the page
« page with largest counter is least recently used

 Some architectures don’t have PTE reference bits

— can simulate reference bit using the valid bit to induce faults
* hack, hack, hack

22

Approximating LRU Example
AN

2/9/2022 23

#4: LRU Clock

AKA Not Recently Used (NRU) or Second Chance

— replace page that is “old enough”

— logically, arrange all physical page frames in a big circle
(clock)

* just a circular linked list
— a “clock hand” is used to select a good LRU candidate

« sweep through the pages in circular order like a clock
« if ref bit is off, it hasn’t been used recently, we have a victim
— s0, what is minimum “age” if ref bit is off?
« if the ref bit is on, turn it off and go to next page
— arm moves quickly when pages are needed
— low overhead if have plenty of memory
— if memory is large, “accuracy” of information degrades
« add more hands to fix

24

22222222

LRU Clock Example
Sy G/ﬁ; i
o

Allocation of frames among processes

FIFO and LRU Clock each can be implemented as
either local or global replacement algorithms

— local -
Q\ch process is given a limit of page:Ji;tac;ér\P
«__it “pages against itself” (evicts its own |
— globa

the “victim” is chosen from among all page frames, regardless
of owner

sses’ page frame allocation can vary dyna
Issues with local replacement? <

Issues with global replacement? &
— Linux uses global replacement

26

Global vs. Local Page Replacement

6@(7&#\ ((LOC ~
\> >
D -

- 5

2/9/2022

* Hybrid algorithms
— local replacement
— an explicit mechanism for adding or removing page frames

28

Number of memory references between page faults

Where would you
like to operate?

Number of page frames allocated to process

— ==n

29

The working set model of program behavior

. Tm a process is used to model the
d | ity of its memory usage

— working set = set of pages process currently “needs”

— formally defined by Peter Denning in the 1960’s
 Definition:

— WS(t,w) = {pages P such that P was referenced in the time

interval @@}

« t:time
« w: working set window (measured in page refs)

« a page is in the working set (WS) only if it was referenced in the
last w references

— obviously the working set (the particular pages) varies over the

life of the prograrr
— so does the working set size (the number of pages in the WS)
30

Working set size

« The working set size, |WS(t,w)|, changes with
program locality

— during periods of poor locality, more pages are referenced
— within that period of time, the working set size is larger

* Intuitively, the working set must be in memo
otherwise you'll experience heavy faulting (thrashing)

— when people ask “How much memory does.Firefox need?”

really they’re asking “what is Firefox’s average (or worst
case) working set size?”

31

#5. Hypothetical Working Set algorithm

Estimate |WS(0,w)| for a process

Allow that process to start only if you can allocate it
that many page frames

Use a local replacement algorithm (LRU Clock?)
make sure that “the right pages” (the working set) are
occupying the process’s frames

Track each process’s working set size, and re-
allocate page frames among processes dynamically

Problem? Solution?
What the heck is w?

32

#6. Page Fault Frequency (PFF)

 PFF is a variable-space algorithm that uses a more
ad hoc approach

« Attempt to equalize the fault rate among all
processes, and to have a “tolerable” system-wide

fault rate
— monitor the fault rate for each process
— if fault rate is above a given threshold, give it more memory
« so that it faults less

— if the fault rate is below threshold, take away memory
 should fault more, allowing someone else to fault less

33

Thrashing

» Thrashing is when the system spends most of its time
servicing page faults, little time doing useful work

— could be that there is enough memory but a lousy

replacement algorithm (one incompatible with program
behavior)

— could be that memory is over-committed
« too many active processes

34

Number of active processes

peaylano olaz yym (-oas/sysenbal) indybnouy) waisAg

35

Bulysely; yum (-oas/sisanbal) jndybnoay) welsAg

Number of active processes

36

Where is life interesting”?

* Not if system has too much memory
/ — page replacement algorithm doesn’t much matter (over-
provisioning)
* Not if system has too little memory
— page replacement algorithm doesn’t much matter (over-
committed)
 Life is only interesting on the border between over-
_— provisioned and over-committed

* Networking analogies
— Aloha Network as an example of thrashing

— over-provisioning as an alternative to Quality of Service
guarantees

37

Summary

Virtual memory <
Page faults =

Demand paging <
— don’t try to anticipate

Page replacement €
— local, global, hybrid

Locality ——
— temporal, spatial

Working set
Thrashing «——

38

* Page replacement algorithms
— #1: Belady’s — optimal, but unrealizable —

— replace page loaded furthest in the past

— #3: LRU — replace page referenced furthest in the past &
« approximate using PTE reference bit

W replace page that is “old enough”
— #5: Working Set — keep the working set in memory

— #6: Page Fault Frequency — grow/shrink number of frames
as a function of fault rate

39

